tively short period of time, so that the resultant shrinkage of the mass will take place before it is necessary to pressure grout the construction joints and impound water behind the dam. The chemical action in setting concrete develops a large amount of heat, which heat is rapidly dissipated by radiation when in masses of small dimensions. On the other hand, this heat radiation from large masses is relatively very slow and varies as the square of the dimensions of the mass. On this basis the degree of cooling that would naturally take place by radiation from a mass 50 feet in thickness (a representative dimension for concrete arch dams of thickness (a representative differential for convicte architecture) in one years' time would require a century if the structure were 500 feet thick, which may be taken as the average thickness of the Hoover Dam. Shrinkage in the mass will continue until the setting heat is dissipated. To correct for this and to make until the setting heat is dissipated. To correct for this and to make the structure monolithic and water-tight, the contraction joints provided for this purpose will be filled with cement grout under pressure after the cement has cooled. The artificial cooling is therefore required in order to permit the completion and use of the dam within a permissible period of time. The rated capacity of the cooling plant is 600 tons per day.

The circulating pipes in the concrete are to be spaced 10 feet apart vertically and about 11½ feet apart horizontally. The approximate basis for estimating the amount of heat to be removed is 50,000 to 60,000 B. t. u. per cubic yard of concrete as an average condition. Data of record relative to the thermal properties of

condition. Data of record relative to the thermal properties of concrete are comparatively meager and, in some instances, apparently erroneous. A suitable series of experiments will be conducted to establish these properties for the specific materials to be used

before concrete placing is begun.

The injurious effects to be anticipated if no provision were made for artificial cooling are the cracking of the concrete and the opening up of the construction joints due to shrinkage from cooling after the structure is completed and put in use. Such cracks and open construction joints would invite leakage and would disarrange the distribution of stresses between the arch and cantilever elements, which would result in concentrated stresses much higher than calculated in the design of the dam due to the structure not being able to act as a monolith.

The turning of the river to permit the unwatering of the actual dam site is no mean undertaking. To do this, four tunnels are to be driven, two on the Nevada side and two on the Arizona side of the river. The bottom elevation of these tunnels will be about the low-water flow line of the river. Each tunnel will be about 50 feet in diameter when finished, and the combined capacities of all four will be about sufficient to take care of the average flow of the Mississippi River at St. Louis. The capacity will be 200,000 cubic feet of water per second. When these tunnels are completed, cofferdams of rockfill construction, faced upstream with steel-pile cut-off walls, will be constructed, one just below the upstream intakes and one just above the downstream discharge ends of the tunnels. These cut-off dams will raise the water at the upstream end and divert the flow of the river through the completed tunnels, and the downstream dam will prevent the water from backing up and flooding the

After the main dam is completed, all four of the tunnels will be plugged at the upstream ends. One tunnel on each side of the river will be used for a spillway by connecting with a slanting shaft having its upper end at the water surface of filled reservoir. The other two tunnels will be plugged at both ends and will be utilized as pressure tunnels to connect with the control gates in the inlet towers.

SOME FIGURES ON THE HOOVER DAM

In order to gain some conception of the magnitude of this great project it does not seem out of place to list some of the items that will enter into it.

Tunnels.—Combined length, 3.1 miles; cubic yards of

excavation in rock, 1,900,000.

Cofferdams.-1,200,000 cubic yards of rock and earth

Reinforcing steel bars and rails.—35,500,000 pounds.

Concrete. 4,400,000 cubic yards.

Miscellaneous items.—Small metal pipe and fittings, 1,900,000 pounds; structural steel, 10,600,000 pounds; large metal conduits, 32,500,000 pounds; metal work, gates, hoists, etc., 20,000,000 pounds.

Time to build.—About six or seven years.

It is estimated that it will require about 350 carloads of material daily to keep up with the demand for supplies during the construction period.

Even the seemingly simple element of elevator service looms rather large when it is realized that enough workmen to man a good-sized manufacturing plant must be handled in and out of a canyon over a thousand feet deep.

This dam will be the Government's answer to a series of vexing problems that have developed in connection with the river and will, as has been aptly said, "Convert a natural menace into a national resource" and will mark one more milepost in man's struggle against

SOUNDING-BALLOON OBSERVATIONS MADE AT BROKEN ARROW, OKLA., DURING THE INTERNATIONAL MONTH, DECEMBER, 1929

By L. T. SAMUELS

[Weather Bureau, Washington, D. C., July, 1931]

In cooperation with the International Commission for the Exploration of the Upper Atmosphere the Weather Bureau conducted a series of sounding-balloon observations at the Broken Arrow (Okla.) aerological station during the international month, December, 1929. The instruments used were of the Fergusson type. The balloons were made of seamless rubber and weighed between 575 and 1,238 grams. They were spherical in shape, between 75 and 100 centimeters diameter, and were inflated to between 137 and 158 centimeters diameter. This gave a free lift of approximately 500 grams and an ascensional rate of about 238 meters per minute.

The balloons were released daily about one hour before sunset so as to eliminate, so far as possible, the effects of insolation on the meteorograph and still make possible the use of theodolites to follow the balloons. On the 17th, 18th, and 19th (international days) additional balloons were released shortly after sunrise. There were 34 observations made, and 26 (76 per cent) of the instruments were returned. One of the latter had the record sheet removed and another had a faulty pressure record. Of the eight instruments not returned, three were followed with two theodolites to the following heights, viz, 13,175 meters on the 2d, 7,420 meters on the 26th, and 17,590 meters on the 30th. Wind velocities and directions were determined to those elevations.

The balloons were followed with two theodolites whenever possible, and in nine cases these continued for 60 minutes or more, the longest run being 90 minutes on

the 25th.

¹ Latitude 86° 02' N., longitude 95° 49' W.

MONTHLY WEATHER REVIEW

The altitudes as determined from 2-theodolite observations and those obtained hypsometrically were in close agreement in most cases. The differences averaged less then 5 per cent. At levels below 10,000 meters the altitudes obtained hypsometrically averaged slightly less than those determined from the 2-theodolite readings and slightly greater at altitudes above 10,000 meters.

The 2-theodolite altitudes were corrected for the curvature of the earth's surface, which correction is additive and amounts to approximately 100 meters when the horizontal distance of the balloon is 35,000 meters and to 1,000 meters when this distance is around 113,000 meters. In some cases the balloon was observed to a horizontal distance of 120,000 meters, the curvature correction for that distance being 1,130 meters.

It will be noted from Figure 1 that practically all of the instruments landed within 200 kilometers of the station and none was found to the westward. The maximum distance from which an instrument was returned was 450

FIGURE 1.—Landing places (with dates) of meteorographs released from Broken Arrow, Okla., during December, 1929

kilometers. This one was released on the 7th and encountered exceptionally strong winds. The balloon was lost to view at 13,200 meters, at which elevation the wind was 60 meters per second from the west-southwest. It was apparently stronger at still greater heights. The weather map of that date indicates an interesting relation between this strong wind and the exceedingly rapid movement of a low-pressure area centered to the northeast of Broken Arrow, accompanied by a rather steep NW.-SE. surface temperature gradient in its rear. Twenty-four hours later this low was centered 2,000 kilometers to the northeast.

The highest elevation reached during the month was 22,921 meters on the 25th. In 17 cases the maximum heights exceeded 15 kilometers; in 6 of these cases the balloons were of the largest size used, i. e., between 91 and 107 centimeters diameter, whereas, with the exception of 2 cases, all of the other balloons were smaller, i. e.,

76 centimeters diameter. In the two cases referred to above the heights reached were more than 13 kilometers. It is therefore evident that the larger balloons proved to be the best for reaching high altitudes.

TEMPERATURE

The lowest temperature recorded during the series was -80.8° C. at 15,191 meters on the 13th. At that altitude the pressure record was obliterated, but the temperature trace shows a further fall to -81.7° C. at apparently 1 kilometer higher. This is the lowest temperature ever recorded on this continent, the previous record being -79.4° C. at 14.8 kilometers at St. Louis, Mo., on January 25, 1905. The low mark of -81.7° C. seems to be confirmed by the observation of the following day (14th), when -77.0° C. was recorded at 16,142 meters. The weather maps of those two days show practically the entire country to have been dominated by large high-pressure areas, with centers over the southern plateau and South Atlantic States, the Canadian Northwest, and and Canadian Maritime Provinces, low-pressure areas being conspicuously absent.

Likewise, the map of January 25, 1905, shows St. Louis to have been close to the center of an exceptionally strong high-pressure area (31.1 inches). It is also found that on the day when the minimum temperature of -78.3° C. at 17,467 meters on October 9, 1927, was recorded during the sounding-balloon series at Groesbeck, Tex. (2), the country was covered by a very extensive high-pressure area.

It seems probable that these very low temperatures in the stratosphere are associated with the cold currents of "equatorial fronts." Unfortunately upper air wind observations were impossible on these days because of cloud conditions over Broken Arrow, the sky being practically covered with stratus moving from the south-southwest.

The following are some of the significant features of the tropopause obtained for the more recent monthly series of sounding-balloon observations made in this country:

	Date	Mean height of tropo- pause	Mean tempera- ture of tropo- pause	Maxi- mum height of tropo- pause observed	Mini- mum height of tropo- pause observed	Range in height of tropo- pause observed
Br Grossbeck, Tex. (2) Royal Center, Ind. (8)	Dec. 1929 Oct. 1927 May 1926	Meters 10, 083 14, 823 12, 011	° C. -54.0 -65.5 -58.4	Meters 12, 212 17, 467 15, 840	Meters 7, 728 11, 695 8, 878	Meters 4, 484 5, 772 6, 962

The variations found between these stations are very probably the result of both a geographical and seasonal effect.

The altitude and temperature of the tropopause, for the individual observations with the corresponding dates are shown, together with the mean temperature curve, in Figure 2. The usual inverse relationship between temperature and height of the tropopause will be noted.

In Table 1 may be seen the progressive rise and fall of the tropopause during the latter part of the month, when observations of the stratosphere were obtained on several

¹ Annals Harvard College Observatory, vol. 68, pt. 1.

² The expression "equatorial front" is used by Willstt in Bulletin National Research Council No. 79, Dynamic Meteorology, p. 229, as the antithesis, in a much modified degree, of the well-known expression "polar front."—Eb.

consecutive days. It will be noted that a progressive decrease in height occurs from the 19th to the 21st; then an increase in height to the 25th, followed by another

general decrease.

The direct relationship usually found between the sealevel pressure and the height of the tropopause was decidedly abnormal. During the latter part of the month, when the tropopause was low, the sea-level pressure was in general above normal, the maximum departure, +0.386 inch, occurring on the same day (21st) that the lowest tropopause was recorded. Likewise, on the 25th, when the highest tropopause was recorded, the sea-level pressure was 0.078 inch below normal. In this connection it is noted that there was no apparent connection between the height of the tropopause and the sea-level pressure found at Groesbeck in the series of October, 1927 (2). It would seem that this direct relationship occurs only in the higher latitudes.

In Figure 3 are shown the individual temperature altitude curves. The surface temperature is indicated at the bottom of each curve and the temperature at the maximum altitude at the top. The wind directions whenever observed are indicated adjacent to the corresponding curves for the standard levels. Attention is invited to the curves for the 7th, 20th, 22d, and 27th, where a south wind component occurs, together with a relatively large decrease of temperature, within the stratosphere. This, it appears, is associated with the "equa-

torial front."

In general when the tropopause is high the lower part of the stratosphere is characterized by a relatively large inversion. This, of course, tends to equalize the tempera-

ture in the higher levels of the stratosphere.

The maximum average lapse rate was 0.77° C./100 meters and occurred between 6 and 7 kilometers. (See Fig. 2.) At the Groesbeck (2) this value was 0.79° C./100 meters, and at Royal Center (3), 0.71° C./100 meters. At both of the latter stations, however, this maximum average lapse rate occurred at a slightly greater altitude, viz, between 7 and 8 kilometers.

In Figure 4 are shown the free-air isotherms for the month with the dates indicated across the top. The average height of the tropopause at 10 kilometers is well brought out in this chart. The pronounced isothermal conditions in the stratosphere during the last decade of the month, when most of the higher observations were obtained, are clearly evident.

, -

WIND

Figure 5 shows the mean wind velocity and direction curves for the month. The mean velocities and mean directions were determined independently of each other. It will be noted that the mean velocity reaches a maximum (37.5 m. p. s.) at 11 kilometers, i. e., 1 kilometer above the mean height of the tropopause. Above this height the average velocity decreases at a somewhat lower rate than that at which it increased in the lower levels which indicates a still lower value at altitudes above 21 kilometers.

The mean wind direction veers from south of west below 1,200 meters to north of west, above, up to 21 kilometers, where it is west.

Figure 2.—Mean temperature curve (° C.) for December, 1929, Broken Arrow, Okla. (Circles indicate height and temperature of tropopause with corresponding dates)

8

8

ALTITUDE (KM) MS.L.

FIGURE 4.-Free-alr isotherms (° C.) observed at Broken Arrow, Okla., during December, 1929. (Broken lines drawn between missing days with observations)

The individual wind velocity curves are shown in Figure 6. The general increase in velocity from the ground to the tropopause is evident and also the decrease

within the stratosphere.

Figure 7 shows the wind-direction curves for each observation. The rapid shift to northwesterly between the surface and 2 kilometers is clearly indicated. In no case was a shift to easterly found at the highest levels as at Groesbeck in October, 1927 (2). However, it will be noted that in three cases (3d, 10th, and 29th) the direction at the upper extremities of the curves reaching to high altitudes (above 18 kilometers) veers toward the north. This characteristic is very similar to the curves for Groesbeck (2), where the veering continued past north into east. It seems very probable, therefore, that at somewhat greater heights the upper easterly winds would have been observed at Broken Arrow.

RELATIVE HUMIDITY

Figure 8 shows the mean relative humidity for the month. However, on account of the increasing lag of the hair hygrometric element at temperatures below -15° C., the mean humidity values must be accepted with reservation above 5 kilometers.

For references to previous sounding-balloon series made in this country see Monthly Weather Review, June,

1929, pages 231-246, and July, 1927, page 302.

Table 1.—Summary of sounding-balloon observations made at Broken Arrow, Okla., during December, 1929

	Time of	Stratos	phere	Mari-	Mini-		dolite ations		ograph ind
Date	release, 90th mer.	Height of base, M. S. L.	Tem- pera- ture at base	mum height reached, M. S. L.	mum temper- ature recorded	2-theod- olite	1-theod- olite	Dis- tance from station	Direc- tion from station
1	4:23 p	M. 9, 272	° C. -45.4	M. 12, 327	° C. -52.7	Min.	Min. 16	Km. 300	ENE.
2	4:24 p	- -		13, 175		60		(1)	
3	1:04 p	10,639	55.0	15, 957	-64.0	40		145 84	SE. SE.
4				3 19, 600	-54.1 -57.6	72	78 28	250	E.
	4:07 p			10, 759	-57. 6	5		110	ËNE.
6	4:13 p 4:22 p	11 206	KK 0	16, 181	-65.5	53		450	ENE.
ś	3.30 p	11, 200	-50. 5	9,900	-46.8	16		270	E.
9	3:59 p			5.783	-11.6	10	21	385	Ē.
0	3:58 0				-67. 6	80	85	127	E.
1	4:17 p			9, 402	-44.0	20		127	E.
2	4.20 n	Į.		l		1 6	15	(1)	
3	4:19 p	12,000 11,112	-72.5	15, 191	-81.7	2	5	110	E.
4	4:25 p	11, 112	-55.2	17, 304	-77.0	0		110	E.
b	4:03 p		\		- - <u></u> -	0	1	(1)	l
<u>6</u>	4:12 p		<u></u> -a-	10, 764	-37.3	5		63 85	E. N.
<u>7</u>	7:27 8	11,072	-57.8	18, 962	-60.7	1 1	4		Ν.
7	4:21 P					3]	8	1
8 8					-42.0	ő	5	120	SE.
9				0,012		·	U	(1)	
9	4:10 p	8, 999	-50.1	18, 704	-60.7	48	51	`í85	SE.
0		8, 652	-46. 2	20, 355	-60.9	183		145	ESE.
ĭ	4:26 p	7, 728	-47.1	16, 334	-62. 5	21		125	ENE.
2	3:32 p	9, 386	-54.1	17, 790	-62.8	53	66	170	E.
3	4:12 p	9,820	-56.8	21, 289	-61.4	78	86	125	SE.
4	4:04 p			1 13, 070	-37.3	40	50	365	ESE.
5	3:49 p	12, 212	-63.8	22, 921	-63.8	90		150	ESE.
3	4:04 p			7, 420		27 69		(¹) 160	E.
7 -	4:21 p	9, 660	51. 5	19,078	-71.3 -62.3	46	56	190	ESE.
8			-53.0 -45.8	18, 519 18, 550	-64.1	74	83	136	SE.
9 9			-40.8	15, 611	-02.1	65	73	(1)	Ja.
ŭ 1	4:10 p			1 5, 183	(4)	21	23	160	NE.
	4:10 h			- 0, 100	(3)	} -1	1 -0	1 200	112.

¹ Not found.

1 Maximum altitude from 2-theodolite observation.

1 In the two theodolite observation of the 20th, the balloon was observed until its horizontal distance from the place of observation was 122 km., at which time the balloon had reached an altitude of 18 kms. and had been in the air 83 minutes. So far as is known, this is the greatest horizontal distance to which a balloon has ever been observed by two theodolites.

4 Record sheet lost.

Figure 5.—Mean wind velocity (m.p.s.) and direction curves observed at Broken Arrow, Okla., during December, 1929

Figure 6.—Wind-velocity curves for individual observations made at Broken Arrow, Okla., during December, 1929

Figure 7.—Wind-direction curves for individual observations made at Broken Arrow, Okla., during December, 1929

FIGURE 8.—Mean relative humidity curve for December, 1929, Broken Arrow, Okla.

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

	E	roken	Arrov	v, Okio	a., di	uring	Dece	mber, I	1929	1	<i>sroken</i>	Arrow	, Okla	., duri	ng I	Decem	ber, 1	929	Continued
				DECE	MBE	R 1, 1	929							DECE	MBE	CR 4, 1	929		
	8. L.				Hur	nidity	w	ind			S. L.				Hun	nidity	w	ind	
Time 90th mer.	Altitude, M. f	Pressure	Temperature	<u>△t</u> 100 m.	Relative	Vapor pressure	Direction	Velocity	Remarks	Time, 90th mer	Altitude, M. S	Pressure	Temperature	<u>∆t</u> 100 m.	Relative	Vapor pres- sure	Direction	Velocity	Remarks
P. m. 4:23 4:27 4:28 4:29 4:31 4:34 4:36 4:42 4:43 4:46 4:49 5:02 5:03 5:07 5:09 5:10	2,000 2,205 2,500 2,720 3,000 3,825 3,886 4,000 4,602 5,084 6,000	24b. 991. 1 958. 6 900. 5 900. 0 892. 7 863. 3 844. 5 814. 4 792. 2 626. 1 621. 2 626. 1 621. 2 631. 6 637. 0 633. 4 634. 3 634. 4 635. 1 635. 1 636. 9 646. 3 646. 3 6537. 6 6537. 6 6537. 6 6537. 6 654. 3 655. 1 655. 6	-16. 4 -24. 4 -26. 7 -32. 0 -37. 9 -37. 9 -45. 4 -45. 4 -44. 3 -45. 5 -51. 7	0. 68 -0. 25 0. 04 0. 55 -0. 33 0. 54 0. 30 -1. 48 0. 59 0. 23 0. 87 0. 72 0. 00 0. 61 0. 00 -1. 29 0. 30 0. 30	P. d. 78 85 5 68 99 93 34 72 60 89 94 94 61 55 54 55 54 49 44 77 47	Mb. 5. 27 4 79 4 79 4 79 4 79 4 79 3 62 2 78 2 2 78 2 2 12 2 12 2 12 2 12 1 152 1 10 0 10 0		M.p.s. 7.6 10.4 15.4 15.6 14.3 11.8 11.4 11.6 10.2	1 Ci. Cu. W.; 5 A. Cu., W.; 3 St., N.	P. m. 4:21 4:24 4:25 4:27 4:32 4:44 4:51 5:40	M. 233 500 851 1,000 851 1,167 1,560 1,1681 2,000 4,000 5,171 7,000 8,000 9,323 10,000 12,000 12,000 12,000 11,000	275.1	°C. 13. 4 11. 2 8. 2 9. 2 10. 4 8. 8 8. 5 8. 5 8. 5 8. 5 1. 4 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1. 3 1. 3 1. 3 1. 4 1. 5 1. 9 1. 4 1. 4 1. 5 1. 9 1. 4 1. 4 1. 4 1. 4 1. 4 1. 4 1. 4 1. 4	0.84 -0.70 0.48 0.00 	P. ct. 39 44 451 44 37	Mb. 6.00 5.85 5.54 5.12 4.67	S. SSW. WSW. WSW. WSW. WSW. WSW. WSW. W	M.p.s. 4.0 7.6 8.0 9.1 10.0 9.1 5.4 5.4 5.5 8.8 10.5 14.2 15.0 14.2 15.0 17.8 16.6 7.3 13.0 11.5	Few Ci., WNW.
				DECE:	MBE	R 3, 1	929						,	DECE	MBE	R 5, 1	929	<i>i</i> 1	
P. m. 4:04 4:06 4:09 4:11 4:14	M. 233 500 586 1,000 1,171 1,345 1,500 1,560 2,000 2,063 2,296	Mb. 994. 8 963. 2 953. 0 906. 0 887. 2 868. 2 852. 2 845. 6 800. 9 794. 5 771. 9	°C. 9.8 7.8 7.1 3.8 2.4 3.3 2.8 2.6 2.6 1.7	0. 76 0. 80 -0. 52 0. 33	P. cl. 36 37 37 41 42 40 43 44 44 44 43	4. 36 3. 91 3. 73 3. 29 3. 05 3. 10	w. w. w. wnw. wnw. wnw. wnw.	M.p.s. 3.6 6.9 7.2 7.2 8.9 12.2 14.2 15.2 16.2 17.6	Cloudless.	P. m. 4:07 4:10 4:12 4:17 4:20	M. 233 500 830 1, 000 1, 131 1, 500 2, 065 2, 500 2, 560 3, 000 3, 503	Mb. 985. 7 955. 1 918. 2 899. 8 885. 8 847. 4 797. 8 791. 4 750. 9 745. 5 706. 8 664. 5	°C. 15.7 13.9 11.7 10.6 9.8 9.3 9.3 9.3 9.3 9.3	0. 67 0. 63 0. 05 0. 76	P. d. 34 34 35 37 39 35 31 30 26 25 24	Mb. 6. 07 5. 40 4. 81 4. 73 4. 18 3. 63 3. 04 3. 04 2. 32 1. 70	SW. SSW. SW. SW. WSW. WSW. WSW. WSW. WS	M.p.s. 7.2 8.1 13.6 14.5 14.7 23.3 21.8 21.6 18.4 17.8 15.2 15.2	6 Ci., W.; 2 Ci. Cu., W.

!					1				
P. m.	М.	Mb.	°C.	1	P. ct.	Mb.		M.p.s.	
4:04	233	994.8	9.8		36	4. 36	w.	3.6	Cloudless.
	500	963. 2	7.8		37	3. 91	w,	6.9	
4:06	586	953.0	7.1	0.76	37	3, 73	W.	7, 2	
	1,000	906.0	3.8	1	41	3. 29	wnw.	7. 2	
4:09	1, 171	887. 2	2. 4	0.80	42	3, 05	wnw.		
4:10	1,345	868. 2	3. 3	-0.52	40	3.10	wnw.	12. 2	
	1,500	852. 2	2,8		43	3. 21	wnw.	14. 2	
4:11	1,560	845. 6	2.6	0.33	44	3. 24	wnw.		
	2,000	800. 9	2. 6	0.00	44	3. 24	wnw.	16. 2	
4:14	2,063	794. 5	2.6	0,00	44	3. 24	wnw.	16.0	
4:15		771. 9	1.7	0.39	43	2. 97	wnw.		
4.10	2,500	752.7	1.6		41	2. 81	wnw.		
4:17	2,656	738. 3	1.5	0.06	40	2.72	wnw.	21. 4	
4.11	3,000	707. 3	-0.6		39	2. 27	wnw.		
4:19	3, 208	689.1	-1.9	0.62	38	1. 99	WIW.	21.0	
	3, 403	672.6	-1.9	0.02	36	1.88	WHW.	22. 2 22. 2	
4:20					34		WIIW.	22. 2	
4:25	4,000	623. 6	-5.1	0. 53			n.	24.4	
4:20	4,582	578.9				1.01	n.	24.8	
4.01	5,000		-11.5		34		n.	26. 1	
4:31		489. 1	-18.3	0.78	36	0.44	ш.	25. 5	
	6,000	480.5	-19.4		36	0.40	n.	25.4	
	7,000		-27.7	:-:-	36	0.18	n.	28.0	
4:36		411.3	-28.9	0.83	36	0. 16	nnw.	27.3	:
	8,000		-36.3		35	0.07	nnw.	35. 2	
4:43	8,847		-43. 5	0.86	35	0.03	nnw.	34. 4	
	9,000		44 . 5		35	0.03	nnw.	34, 6	
	10,000	272. 2	-50.9		34	0.01	nw.	45.8	
	10, 639		55. 0	0.64	34	0.01	nw.	39.4	Tropopause.
4:51	10, 998	233.8	 53.9	-0.31	34	0.01	nw.	18.0	
	11,000	233. 7	-53.9		34	0.01	nw.	18.0	
	12,000	200.9	54. 5	Ì	34	0.01	nw.	23, 8	
4:56	12,721	179.8	-55.0	0.06	34	0.01	nnw.	29.4	
	13,000	172.1	-55.6		34	0.01	nnw.	28.0	
i	14,000	147. 5	-57.8	-	34	(1)	w.	24.0	
5:02	14.372	139. 2	-58, 6	0. 22	34		wnw.	24.3	
	15,000	126.1	-60.7		34		wnw.	29.0	
5:08	15, 957	108. 2	-64.0	0.34	34	(1)	wnw.	30. 1	
	16,000						nw.	30. 4	
	17,000						wnw.	22.5	
	18,000						wnw.	21.6	
i	19,000	1		-			wnw.	16.0	
	20,000	I					nw.	15.3	
5:26	20, 690	l					nnw.	15. 2	
	_0,000						232 W .	1 -5.2	

[·] Less than 0.01 mb,

P. m.	М.	Mb.	°C.		P. ct.	Mb.		M.p.s.	ĺ				
4:07	233	985. 7	15, 7		34	6.07	8W.	7. 2	6 (7i	W.;	2	Cì.
	500	955. 1	13. 9		34	5.40	8SW.	8.1	ľο	u.,	w. ´		
4:10	830	918. 2	11.7	0.67	35	4.81	SSW.	13.6					
	1,000	899. 8	10.6		37	4. 73	SW.	14.5					
4:12	1, 131 1, 500	885, 8	9.8	0.63	39	4. 73	SW.	14.7	1				
	1, 500	847. 4	9, 6		35	4. 18	wsw.	23. 3	ł				
	2,000	797. 8	9.3		31	3.63	wsw.	21.8					
4:17	2,065	791.4	9.3	0.05	30	3. 51	wsw.	21.6	İ				
	2, 500	750.9	9.3		26	3.04	w.	18.4					
4:20	2, 560	745. 5	9. 3	0.00	26	3.04	w.	17.8					
	3,000	706.8	5. 9	[25	2.32	wsw.	15, 2	i				
1:25	3, 503	664.5	2. 1	0.76	24	1. 70	wsw.	15, 2	!				
1:26]	3, 607	656.0	2. 3	-0.19	22	1.59	wsw.	14.7					
	4,000	624. 5	-0.7		23	1.33	w.	13.6	1				
1:34	5,005	549.8	-8.3	0.76	24	0. 73	wsw.	23. 2	İ				
-	6,000	483.1	-16.1		25	0.38							
1:42	6, 431	456.6	-19.5	0.79	25	0.28							
	7,000	422.6	-24.3		26	0.18							
1:50	7, 949		32.3	0.84	27	0.08							
	8,000	368. 2	32. 6		27	0.08							
:52	8, 366	350.1	-34.4	0.50	27	0.06							
i	9,000	319.6	-40.7		27	0.03							
	10,000	276. 1	-50. 5		26	0. 01							
1:58	10, 179	268.6	-52. 3	0.99	26	0.01							
5:01	10, 759	245.8	-57. 6	0.91	25	(1)							

DECEMBER 7, 1929

				i	I .	i -			·
P. m.	M.	Mb.	°C.	i	P. ct.	Mb.		M.p.s.	
4:22	233	984.4	2, 6		78	5. 74	ne.	2, 2	Cloudless.
	500	952, 3	0.7		87	5. 59	ese.	2.0	
4:26	856	910. 9	-1.9	0.72	100	5. 23	w.	5.1	
	1,000	894. 8	1.1		84	5. 55	wsw.	6.8	
4:27	1,119	881.7	3.6	-2.09	70	5. 53	w.	7, 7	
	1,500	840. 7	1.9		65	4. 55	w.	7.0	
	2,000	790.0	-0.3		58	3.46	wnw.	7.4	
	2,500	742.4	-2, 5		52	2.58	w.	8.5	
4:35	2,844	711.1	-4.0	0.44	47	2.06	wnw.	8.2	
	3,000	697. 2	-5.0		47	1.89	wnw.	8.0	
- 1	4,000	612, 8	-11.7		46	1.04	₩.	16, 2	
4:42	4, 130	602.6	-12.6	0. 67	46	0.96	w.	18.2	
4:43	4, 555	570.0	-11.4	-0.28	48	1.11	w.	23,8	
	5,000	537.8	-14.3		45	0.80	w.	23.4	

¹ Less than 0.01 mb.

Table 2.—Tetulated data of sounding-balloon ascents made at Broken Airow, Okla., during December, 1929.—Continued

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

Z	Broken .	Aitow,		., duri MBEI					Continued	В	roken .			., duri MBER					Continued
	ß				Hun	aidity	w	ind		-	B. L.				Hun	idity	W	nd	
Time, 90th mer.	Altitude (M. S.	Pressure	Temperature	<u>∆</u> t 100 m.	Relative	Vapor pres- sure	Direction	Velocity	Remarks	Time 90th mer.	Altitude, M. f	Pressure	Temperature	<u>∆t</u> 100 m.	Relative	Vapor pres- sure	Direction	Velocity	Remarks
P.m. 4:48 4:52 4:58 5:07 5:16	M. 5, 636 6, 000 6, 982 7, 000 8, 000 8, 000 10, 000 11, 000 11, 206 12, 000 13, 336 14, 000 16, 181	Mb. 494. 4 470. 9 411. 7 410. 8 357. 3 319. 6 309. 5 267. 2 229. 9 222. 5 197. 4 169. 0 159. 9 149. 8 123. 4 105. 6	°C18.5 -20.8 -27.0 -27.1 -34.3 -39.9 -41.3 -47.5 -55.5 -54.9 -54.7 -57.2 -61.0 -64.8 -65.5	0. 66 0. 63 0. 72 0. 66 -0. 06	P.cl. 40 41 45 45 42 40 40 39 38 38 37 36 35 34 33 33	Mb. 0. 48 0. 40 0. 24 0. 28 0. 10 0. 00 0.	W8W. W. W8W. W8W. W8W. W8W. W8W. W8W. W	M.p.s. 28.4 30.2 28.6 28.6 34.1 38.8 40.7 35.8 49.9 39.9 54.0	Tropopause.	P.m. 4:22 4:37 4:45	M. 5, 430 6, 000 7, 600 8, 000 9, 000 10, 000 11, 000 11, 000 11, 000 14, 000 15, 000 17, 000 18, 000 19, 000 20, 000	Mb. 528.7 490. i 429. 4 374. 3 324. 5 302. 6 280. 1 240. 1 212. 1	°C8.4 -13.4 -22.3 -31.1 -39.9 -44.2 -49.5 -59.7 -67.6	0.79	P.ct. 20 20 19 19 18 18 18 17 16	Mb. 0. 60 0. 39 0. 16 0. 06 0. 02 0. 01 (1) (1)	WSW. WSW. WIW. WDW. W. W. WSW. W. M.p.s. 13.8 11.6 8.0 7.2 8.4 16.3 21.9 24.5 28.0 32.0 32.0 28.1 24.1 22.2 20.6 15.9 9.0		
				DECE	MBE	R 8, 2	1929		· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	DECE!	MBE:	R 11. :	1929	<u> </u> !	
P. m. 3:39 3:42	M. 233 500 873 1,000	Mb. 986, 2 955, 0 912, 7 898, 6 891, 2	°C. 9.3 7.8 5.6 5.7	0. 58	P. ct. 70 80 95 98	8. 46 8. 64 8. 98	se.	M.p.s. 5.4	10 Ci., WNW.	P. m. 4:17	M. 233 500	Mb. 984. 3 954. 5	°C. 22.8 21.0		P. ct. 62	Mb. 17. 22 17. 66	s.	M.p.s. 7.6	3 Ci. St., W.; 6 Ci.,
3:43	1, 087 1, 425 1, 500 1, 819 2, 000 2, 500 2, 500 2, 703 3, 000 3, 233 4, 000 6, 000 6, 126 7, 170 8, 600 8, 600 8, 600 8, 600	853. 4 845. 8 814. 1 796. 4 749. 5 731. 1 721. 2 707. 4 705. 5 685. 3 622. 9 563. 0 548. 2 474. 5 422. 2 474. 5 336. 3 336. 9 319. 0	5. 7 11. 4 11. 3 11. 1 9. 9 6. 7 5. 4 5. 0 3. 6 3. 6 3. 8 -1. 4 -6. 9 -8. 1 -14. 7 -24. 4 -26. 3 -37. 3 -40. 2 -46. 8	-0. 05 -1. 59 -0. 08 -0. 64 0. 36 0. 87 -0. 08 -0. 68 -0. 59 -1. 11 -0. 76	100 45 35 32 25 22 21 21 19 8 18 17 16 16 15 15	9. 16 6. 07 5. 76 4. 62 3. 90 2. 45 1. 97 1. 92 1. 66 1. 52 1. 03 0. 62 0. 56 0. 31 0. 09 0. 04 0. 03 0. 02 0. 02				4:21 4:22 4:23 4:25 4:26 4:37 4:41 4:51 4:51	1,000 1,106 1,235 1,440 1,500 1,500 2,238 2,500 2,566 2,566 3,000 4,000 4,778 5,000 7,000 7,325 8,000 9,000 9,402	900. 8 889. 8 876. 4 855. 2 849. 4 808. 6 800. 9 778. 6 7748. 7 737. 5 710. 7 629. 5 556. 1 489. 4 429. 4 411. 3 375. 0	17. 5 16. 8 16. 4 15. 7 15. 7 16. 0 15. 4 13. 5 11. 9 11. 7 9. 8 3. 5 -1. 4 -3. 0 -9. 4 -10. 5 -20. 0 -23. 1	0. 69 0. 31 0. 34 -0. 06 0. 78 0. 61 -0. 16 0. 63 0. 72 0. 95	87 90 88 65	17. 41 17. 23 16. 42 11. 60 10. 88 6. 55 6. 68 5. 01 4. 61 4. 40 3. 76 2. 20 1. 36 0. 63 0. 25 0. 18 0. 0. 02	SSW. SSW. SW. SW. SW. SW. WSW. WSW. WSW	11. 2 13. 9 14. 5 15. 1 16. 9 17. 4 19. 0 19. 6 17. 0 16. 6 16. 2 14. 0 12. 2 16. 4 16. 4 11. 2 10. 9	
				DECE	MBE	R 9,	1929				 .			DECE:	MBE	R 13, 1	1929	1	
P. m. 3:59 4:00 4:01 4:04 4:05 4:10 4:16 4:16 4:23	M. 233 485 500 675 1, 000 1, 500 2, 500 2, 500 4, 000 5, 783	Mb. 988. 5 961. 3 957. 2 937. 3 901. 4 857. 5 849. 3 839. 9 800. 4 754. 0 630. 9 627. 8 553. 5 500. 6	°C. 10.7 8.5 8.5 8.4 11.6 15.7 15.6 13.2 10.1 8.7 6.6 0.8 0.5 -6.3	0. 95 -0. 98 -0. 98 -0. 61 0. 82 -0. 60	P. ct. 74 92 93 98 67 28 28 27 26 25 24 23 31 31 32 33	Mb. 9, 52 10, 21 10, 32 10, 80 9, 15 5, 00 4, 79 3, 95 3, 95 2, 70 2, 26 2, 24 2, 01 1, 96 1, 16 0, 75	6. 58W. 5W. WSW. WSW. WSW. WSW. WSW. WSW. WSW.	M.p.s. 2.2 2.8 3.8 7.6 6.12.5 16.4 16.2 16.1 20.6 21.6 21.6 21.6 17.0 19.8	10 Ci. St., W.	P. m. 4:19 4:22 4:23 4:24 4:25 4:30 4:32 4:35 4:37	M. 233 500 738 994 1,000 1,415 1,500 2,500 2,500 3,031 3,000 4,313 5,000 5,028 5,454	Mb. 991. 9 961. 7 935. 3 907. 6 907. 6 907. 0 863. 8 856. 1 846. 2 805. 8 758. 8 754. 6 1 711. 2 6 631. 1 606. 9 556. 4 524. 9	16.6 16.0 14.6 14.5 14.4 11.4 7.7 6.7 4.5 4.3 2.0 0.2 -1.8 -8.7 -9.0	0. 67 0. 23 0. 33 0. 11 0. 74 0. 60 0. 34	92 100 88 88 99 90 85 82 79 78 54 52 40 40 39 43 43 36	Mb. 19, 42 19, 24 18, 90 16, 01 15, 79 14, 86 13, 95 11, 05 4, 55 4, 32 2, 48 2, 06 1, 23 0, 84	S. SSW. SSW. WSW. WSW.	M.p.s. 6.7 9.5 11.6 10.0 10.0	2 Cl. St., WSW.; 8 St., SSW. 2 Lowest tempera- ture recorded; al- titude approxi- mately 16,476 m., M. S. L., based on ascensional rate.
			1	DECE	4BE	R 10,	1929			4:45	6,000 6,032 7,000	488. 8 486. 5 427. 4 401. 7	-16. 4 -16. 7 -25. 5	0. 93	33 33 32	0. 49 0. 47 0. 19			
P. m. 3:58 4:01 4:02 4:03 4:04 4:07	1, 294 1, 500 1, 965 2, 000 2, 500 3, 000	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	°C. 20.6 18.5 15.6 15.1 15.1 16.6 15.4 12.9 10.3 9.5 2.9 -5.0	0. 21 0. 51	75 96 90	14. 57 15. 98 17. 02 15. 45 15. 45 9. 50 7. 75 6. 99 5. 25 4. 32 3. 51 3. 32 1. 88	SSW. SSW. SSW. SW. SW. SW. WSW. WSW. WSW. W. W.	M.p.s. 5. 8 12. 2 11. 3 12. 5 12. 6 15. 2 18. 0 16. 9 16. 8 12. 0 11. 5 12. 6	4 Ci., WSW.	4:52 4:57 5:03 5:10 5:13 5:15 5:19	7, 457 8, 000 8, 760 9, 000 10, 000 11, 000 12, 000 12, 592 13, 000 13, 905 14, 000 15, 191	372, 3 334, 3 322, 7 278, 5 263, 2 204, 1 185, 5 174, 9 173, 5 160, 3 148, 0 125, 2 121, 3	-34, 4 -41, 0 -43, 2 -52, 2 -55, 6 -62, 1 -72, 5 -69, 1 -66, 2 -73, 1 -73, 7 -79, 2	0, 84 0, 87 0, 91 1, 04 -0, 57 -0, 87 0, 76 0, 60	31 30 29 29 30 30 31 31 30 28 28 27	0. 12 0. 07 0. 03 0. 03 0. 01 0. 01 (1) (1) (1) (1) (1) (1) (1)			Tropopause.

¹ Less than 0.01 mb.

¹ Less than 0.01 mb.

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

Table 2.—Tabulated data Broken Arrow, Okla.,	a of	sounding-balloo	n ascents	made	æ
Broken Arrow, Okla.,	durin	g December, 19:	%—Conti≀	nued	

E	Moken .	ATTOW	•	DECE	•		-	828-	Conunued	L	токен		DECE:	-	-				Source and a second
	ıj				Hun	nidity	w	ind			S. L.)				Hun	nidity	w	ind	
Time 90th mer.	Altitude, M. S.	Pressure	Temperature	<u>∆</u> \$ 100 m.	Relative	Vapor pres-	Direction	Velocity	Remarks	Time 90th mer.	Altitude (M. 8	Pressure	Temperature	<u>∆</u> t 100 m.	Relative	Vapor pres- sure	Direction	Velocity	Remarks
P. m. 4:25 4:30 4:31 4:34 4:35 4:39 4:40 4:44 4:47 4:49 4:50 4:51 4:52 4:58 5:03	M. 233 500 1, 000 1, 278 1, 500 1, 500 2, 108 2, 500 2, 500 2, 851 4, 000 4, 847 5, 785 6, 000 8, 000 8, 000 8, 000 8, 000 9, 000 9, 767	Mb. 7963. 7 963. 0 908. 0 878. 8 565. 3 855. 7 765. 3 762. 1 758. 7 7723. 8 888. 5 630. 9 566. 9 565. 8 540. 5 502. 1 8 488. 0 4 456. 2 4 427. 2 372. 7 323. 7 323. 7 323. 7 323. 7 323. 7 323. 7 328. 7 3	°C. 17. 2 18. 9 13. 5 12. 1 11. 4 11. 4 11. 0 9. 7 7. 3 5. 9 0. 3 -1. 9 -6. 3 -7. 6 -9. 0 -11. 0 -12. 9 -14. 8 -18. 1 -18. 5 -23. 7 -30. 6 -32. 6 -32. 6 -32. 8 -33. 8 -33. 8 -33. 8 -33. 8 -33. 8 -34. 5	0. 49 0. 30 0. 29 0. 65 0. 80 0. 60 0. 59 0. 93 0. 95 0. 95	95 96	Mb. 18, 65 17, 17 14, 86 19, 71 14, 86 19, 71 18, 87 19, 71 18, 86 19, 84 19, 71 18, 86 18, 93 18, 94 19, 70 18, 94 19, 70 19, 94 19, 9	5.	M.p.e. 8.1	1 A. St., SW.; 9 St., SSW.	A. m. 7:32 7:35 7:35 7:41 7:51 7:55 8:01 8:10 8:18 8:28	Af. 1, 399 1, 500 1, 946 2, 500 2, 500 2, 500 3, 391 4, 900 4, 701 5, 669 6, 658 7, 000 11, 000 11, 000 11, 000 11, 000 14, 010 14, 010 14, 010 14, 010 18, 902	Mb. 854. 5 843. 9 800. 0 794. 3 747. 1 7 701. 9 668. 7 7618. 7 498. 1 476. 5 435. 7 361. 3 342. 2 312. 9 229. 3 190. 4 6. 0 125. 1 107. 3 95. 8 91. 6 6 8 7 8 6 8 7 8 6	°C.1 8.6 6.4 5.9 1.3 -1.3 -3.4 -7.8 -12.9 -14.1 -17.0 -20.7 -20.7 -30.2 -36.7 -39.1 -57.8 -57.8 -54.7 -56.8 -54.7 -59.0 -59.0 -59.0	0. 49 0. 50 0. 80 0. 54 0. 72 0. 43 1. 11 0. 64 0. 69	P. ct. 100 98 79 80 99 19 98 44 41 42 45 46 44 44 42 49 38 337 37 36 36 36 36 36	Mb. 11.56 10.72 7.59 4.06 2.1.39 0.42 2.1.39 0.01 0.01 0.01 0.01 0.01 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		M.p.s.	Tropopause.
5:07 5:11 5:13 5:15 5:18 5:21 5:26 5:32 5:32 5:42	10,000 11,000 11,112 12,000 12,316 12,523	230. 1 241. 5 237. 2 207. 3 197. 4 191. 0 181. 8 177. 2 162. 8 151. 7 146. 8 129. 2 126. 1 109. 6 100. 9 100. 3 93. 1 88. 2	-48. 4 -54. 3 -55. 2 -57. 3 -58. 0 -59. 1 -59. 5 -61. 8 -66. 0 -66. 5 -71. 1 -71. 9 -76. 3 -74. 7 -73. 4	0.80 0.23 0.53 -0.10 0.42 0.72 0.58 0.51 -0.10 -0.41	38 39 39 35 34 33 83 83 81 31 31 30 30 30 31	0.02			Tropopause.	P. m. 4:45 4:48 4:53	M. 233 500 903 1,000 1,185 1,500 2,000 2,246 2,500 3,000	67. 5 999. 0 965. 0 915. 5 904. 0 882. 3 846. 6 792. 5 791. 4 603. 6 670. 7 647. 8 605. 5 562. 0 527. 3 522. 3	°C. -8.4 -10.4 -13.4 -12.9 -12.0 -13.4	0.75 -0.50 -0.45 0.13	l	R. 18, 1	n. nnw. nw. nnw. nnw.	M.p.s. 13.4 16.7 19.1 18.9 18.2	6 A. Cu., NW.; 4 St., NNW.
				DECE	мві	ER 16,	1929			4:59 5:00	3, 249 3, 505 4, 000	670. 7 647. 8 605. 5	-21. 2 -22. 6 -24. 6	0. 52 0. 55 0. 40	 	 			
P. m. 4:12 4:17	M. 233 500 952 1,000 1,194	Mb. 985. 9 955. 3 905. 3 900. 1 879. 5 847. 6 823. 2	°C. 16.6 14.4 10.6 10.5 9.9	0.83	P. ct. 76 85 100 97 85	<i>Mb.</i> 14. 36 13. 95 12. 78 12. 32 10. 37	8. 590. 95W. 88W.	M.p.s. 4.5 4.5 4.5 4.5 4.5	4 St. Cu., SSW., at 4:12 p. m., in- creasing to 9 St. Cu., SSW., by 4:20 p. m.	5:04 5:06 5:12	4, 542 5, 000 5, 071 6, 000 6, 874	527. 3 522. 3 522. 3 457. 7 403. 1	-42.0	0. 79					·
4:21 4:22 4:23 4:25 4:27 4:32 4:36 4:39 4:44 4:40 4:51 4:52	1,500 1,742 1,898 2,000 2,163 2,500 2,592 2,868 3,000 4,003 4,903 5,622 6,000 7,000 8,000	847. 6 823. 2 807. 6 797. 6 797. 6 750. 5 741. 9 717. 3 705. 7 622. 4 547. 7 505. 2 479. 7 420. 2 367. 6 321. 0 280. 3 273. 5 259. 9 251. 4	8.0 6.5 6.1 6.3 6.5 6.1 4.7 1.8 -4.8 -11.8 -13.8 -18.7 -22.4 -23.9 -26.7 -31.7 -32.5 -35.3 -37.3	0. 62 0. 28 -0. 15 0. 42 0. 72 0. 66 0. 73 0. 32 0. 36 0. 50 0. 77 0. 85	93 100 68 60 51 44 42 46 44 32 34 34 30 29 28 26 25 24 24 24 24 24 24 24 24 24	9, 98 9, 68 9, 68 21 5, 72 4, 94 3, 59 3, 41 3, 06 1, 31 0, 77 0, 76 0, 56 0, 48 0, 13 0, 13 0, 07 0, 05 0, 04	8W. W8W. W8W. W8W. W8W. W8W.	5.7 6.0 5.8 5.4 5.0 4.7 4.5		P. m. 4:10 4:14 4:18 4:20 4:21 4:28 4:28 4:29 4:30 4:35	M. 233 500 762 1,000 1,464 1,500 1,646 1,848 2,000 2,157 2,456 2,500 3,008 3,308 3,353 3,629 3,744 478 5,000 5,624	Mb. 996. 5 962. 9 930. 9 902. 2 848. 2 844. 1 789. 7 773. 4 743. 3 738. 8 690. 2 658. 6 624. 5 603. 3 565. 1 526. 3 483. 0	°C6.0 -8.4 -10.7 -13.1 -17.8 -17.0 -16.8 -17.6 -17.8 -17.8 -17.2 -17.6 -17.8 -18.0 -20.1 -20.7 -21.5 -21.5 -21.5 -22.1	0.89 1.01 -0.44 -0.10 0.26 0.07 -0.42 0.17 0.00 0.70	P. ct. 45 47 48 51 56 57 56 57 52 51 49 45 40	Mb. 1.66 1.41 1.181 0.72 0.72 0.72 0.62 0.64 0.58 0.56 0.54 0.44 0.38 0.27 0.17	nw. nw. nw. nw. nnw. nnw. nnw. nnw. nnw	M.p.s. 4.9 6.6 6.7,2 10,1 12,4 13,6 13,9 14,3 18,3 21,2,0 24,6 24,6 23,3,0 32,2,5	Cloudless.
		7.57		DECE	1	<u>г</u>	1929	120		4:45	6,000 6,538 7,000	457. 7 423. 4 396. 8	-32. 4 -37. 2 -39. 1	0.89	39 38 37	0. 12 0. 07 0. 05	nw. nw. nw.	32. 0 31. 7 37. 8	
A. m. 7:27 7:30	M. 233 500 924 1,000 than 0.0	Mb. 982. 2 951. 5 904. 7 896. 2 1 mb.	13. 0 12. 4 11. 4 11. 0	0. 23	95 91	14.68 13.68	e. 56. 886. 856.	M.p.s. 2.7 4.8 2.5 2.4	9 St. Cu., Sw.; 10 light haze.	4:49 5:00	7, 417 8, 000 8, 999 9, 993 10, 000 than 0.0		-50.1	0. 42 0. 58 0. 00	37 37 37 36 36	0. 04 0. 03 0. 01 0. 01 0. 01	nw. nw. nw. nw. nw.	38. 3 36. 0 40. 6 44. 6 44. 6	Tropopause.

¹ Less than 0.01 mb.

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929.—Continued

DECEMBER 19, 1929-Continued

					10, 1		, 011 0111 01		
	(M. 8. L.)				Hun	idity	Wi	nd	
Time 90th mer.	Altitude (M.	Pressure	Temperature	<u>∆</u> t 100 m.	Relative	Vapor pres- gure	Direction	Velocity	Remarks
P.m.	M.	Mb.	°C.		P.ct.	Mb.		M.p.s.	
5:01	10, 401	238. 6	-49.9	-0.05	36	0.01		Ma.p.s.	
0.01	11,000	217. 9	-50.5	-0.00	36	0.01			
5:07	11,806	193, 0	-51.3	0. 10	36	0. 01			
	12,000	187. 1	-52, 5		36	0.01			
5:14	12, 515	172.5	55. 8	0.63	35	0.01			
	13, 000	160.3	55. 8		35	0.01			
5:19	13, 353	151.8	-55.8	0.00	35	0.01			
5:21	13, 766	142. 4	58. 3	0.61	35	(2)			
	14,000	137. 4	-59.1		35 34	1 (2)			
5:25	14,800	130.0	-60.3 -60.4	0.34	94	I XX -			,
	14,855 15,000 16,000	117. 6 100. 7	-60.5		34 84	1 XX -			
	17,000	85.9	-60.5		34	00000000			
	18,000	73.3	-60.6		34	K			
5:48	18, 704	65.3	-60.7	0.01	34	હેઇ			
]		-/	1 -	`′			

DECE	AREK	20,	1928

								_	
P. m.	М.	Mb.	°C.		P. ct.	Mb.		M.p.s.	
4:01	233	999. 9	1.0	l	49	3, 21	₩.	2.0	1 Ci., WSW.
2.022	500	967. 0	-1.9		49	2. 56	w.	4.9	,
4:04	849	925. 3	-5.6	1.07	49	1.88	wnw.	5.6	
3.02	1,000	907. 6	-7. ĭ		50	1.68	wnw.	6.2	
	1,500	850.6	$-12, \bar{2}$		52	1. 12	wnw.	7. 5	
4:08	1,620	837. 5	-13.4	1.01	53	1.02	wnw.	9.4	
2.00	2,000	796.6	-12.9	1.02	56	1. 13	wnw.	12.2	
4:10	2,034	793.1	-12.9	-0.12	57	1. 15	wnw.	12.0	
4:11	2, 317	764. 2	-13.8	0. 32	57	1.06	Wnw.	12.0	
4:12	2, 479	748. 2	-13.3	-0.31	54	1.05	wnw.	12.5	
*.14	2,500	746.1	-13.4	_ 0.	54	1.04	wnw.	12.6	
1	8,000	698.5	-16.1		51	0.77	wnw.	12.2	
4-10		658.3	-18.5	0. 54	49	0.59	Wnw.	15.1	
4:16	3, 443	638, 4	-17.3	-0.52	45	0.61	Wnw.	16.0	
4:17	3,676	611.1	-18.9	-0.02	49	0. 57	wnw.	9.8	
4.00	4,000 4,939	538. 1	-13. 7 -23. 7	0. 51	59	0.43	W.	20.9	
4:23	4,939	999. I	-24.1	0. 51	59	0.41		21. 2	
i	5,000	533. 8			57	0. 22	w.	28.0	
	6,000	465.0	-30.0				w.	38.2	
4:30	6,478	434.9	-32.8	0.59	56	0. 16	w.		
	7,000	403.7	-36.0		53 48	0. 11	w.	38.5	
	8,000	349. 2	-42.2		940	0.05	wsw.	44.8	//////////////////////////////////////
4:37	8,652	317. 3	-46.2	0.62	45	0.03	wsw.	46.5	Tropopause.
4:38 [8,880	306.8	-45.5	-0.31	44	0.03	wsw.	45.9	
ĺ	9,000	301.4	-45.7		44	0.03	wsw.	44.8	
- 1	10,000	260. 3	-47.1		44	0.02	waw.	51.6	
J	11,000	224. 2	-48.6		43	0.02	wsw.	49.3	
	12,000	192.7	-50.1		43	0.02	wsw.	48.0	
4:49	12,087	189. 7	-50.7	0. 16	43	0.02	wsw.	48.8	
- 1	13,000	165. 2	-52.0		43	0.01	w.	42.2	
- 1	14,000	141.7	-53.3		43	0.01	w.	25.6	
1	15, 000	121.5	-54.7		48	0.01	w.	21.2	
i	16,000	104.0	56. 1		43	0.01	w.	28.9	
5:01	16, 861	90.7	-57.8	0.14	43	0.01	w.	19.8	
	17,000	88.6	-57. 5		43	0.01	w.	18.7	
l	18,000	75, 8	-59.8		43	(4)	w.	17.8	
5:09	18, 927	65.7	-60.9	0.17	43	33333	₩.	7.1	
ļ	19,000	64.8	-60.8		4.3	(1)	w.	6.8	
	20,000	55. 5	-59.1		42	(1)			
5:24	20, 355	52. 3	-58.5	-0.17	42	0.01			

DECEMBER 21, 1929

P. m.	М.	M.	°C.		P. ct.	мь.		M.p.s.	
4:26	283	1,004.7	-2.5	L	52	2.58	n.	8.6	4 Ci., 88W.; 5 Ci.
1.20_22	500	971. 2	-4.8		58	2.17	nnw.	6.3	St., SW.
4:29	873	926.1	-8.1	0.88	55	1.70	nnw.	8.7	,
1.202.22	1,000	911.1	-8.0		53	1.65	nnw.	5. 5	
4:30	1,404	864.8	-7. 7	-0.08	47	1.50	nnw.	4.7	
1.00	1,500	854. 3	-8.1		47	1.45	nnw.	4.9	
	2,000	800. 9	-10.1		46	1, 20	nnw.	5.8	
4:33	2,391	761. 3	-11.6	0.40	45	1.02	DW.	4.7	
1.00	2,500	750. 5	-12 2	0. 10	44	0.95	nw.	4.9	
1	8,000	702.7	-14.7		42	0.72	wnw.	7. 6	
4:37	3, 889	667. 4	-16.7	0.50	40	0. 57	wnw.	8.9	
3.01	4,000	615. 3	-19.5	0.00	40	0.44	wnw.	7.4	
4:39	4, 184	600. 4	-20.8	0.45	40	0.40	w.	7. 5	
4:09	5,000	537.5	-23.5	0. 20	40	0.80	wsw.	16.4	
4.41	2,000	530. 4	-23.9	0. 39	40	0. 29	wsw.	17.7	
4:41	5,096	468.0	-31. 2	0.55	40	0.14	WSW.	28.7	
4.40	6,000 6,613	429. 2	-36.1	0.80	40	0.08	8W.	30. 2	
4:46	7,000	405.7	-39.9	0. 50	40	0.05	sw.	29. 4	
4.50	7,728	364.8	-47. 1	0, 90	40	0.02	٥	20. 1	Tropopause.
4:50	7,120		74. 1	-0.80	40	0.02			110popause.
4:51	7,999	350. 5	-46.3	-u.au	39	0.02			
	9,000	801. 7	-49.6		38	0.02			
4:55	9, 597	275. 7	-51.5	0.32	30				
	10,000	259. 6	-51.0		38	0.01			
4:58	10, 705	233. 2	-50.1	-0.13	38	0.01			
	11,000 12,000	222. 7	-50.8		38	0.01			
	12,000	191. 5	-53.0		38	0.01			
	13, 000	164.0	_55.3 <u> </u>		88	0,01	J	l	

¹ Less than 0.01 mb.

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

DECEMBER 21, 1929-Continued

	nd -	, Zwi	idity	Hun				8. L.	
Remarks	Velocity	Direction	Vapor pres- sure	Relative	<u>∆</u> t 100 m.	Temperature	Pressure	Altitude, M. E	Time 90th mer.
	M.p.s.		Mb.	P.ct.		• <i>C</i> .	Mb.	М.	P.m.
			0.01	38	0.22	-55. 5	161. 2	13, 108	5:06
		⁻	0.01	38 38	-1.00	-54.5	158.8	13, 199	5:07
			0.01	38		-55.4	140. 5	14,000	İ
			0.01	l 38 l	0.11	-55.5	138. 7	14,072	5:10
			(1)	38		60.4	120.0	15,000	
				38 38 38	0.53	-62.0	114.5	15, 294	5:16
			(1)	38		-62.3	102. 3	16,000	
			(1)	38	0.05	62.5	97. 0	16, 334	5:19

DECEMBER 22, 1929

			[1	1	t	1	1	
P. m.	М.	Mb.	°C.	i	P. ct.	Mb.		M.p.s.	
3:32	233	998.4	-0.7	l	44	2. 54	n.	3.1	Cloudless.
	500	966. 1	-3.5				n.	4.6	•
	1,000	904.3	- 8.9				n.	6.2	
3:36	1, 192	882. 2	-10.9	1.06			n.	6.4	
	1,500	848.7	-11.3				nnw.	9.0	
3:38	1,551	841.9	-11.4	0.14	l		nnw.	9.0	
1	2,000	794. 5	-13.7				wnw.	10.4	
3:42	2,448	748. 2	-16.0	0.51			wnw.	10.6	
	2,500	743. 5	-16.3				wnw.	10.4	
	3,000	693. 7	-19.5		 		wnw.	11.3	
3:48	3,883	614. 7	-25.1	0.63	- -		wnw.	13.3	
	4,000	605.4	-25.9		 -	l	wnw.	14.0	
	5,000	526.8	-32.8				wnw.	29.0	
3:55	5,558	484. 2	-36.6	0.70			Wnw.	35.0	
	6,000	457.3	-38.2				wnw.	34.9	•
	7,000	395.8	-41.7				wnw.	42.6	
4:00	7, 039	390. 2	-41.8	0.35			wnw.	42.6	
	8,000	341. 2	-46.8			-	WLW.	39.6	
	9,000	293.6	-52.1				w.	34.4	_
4:10	9, 386	273. 5	-54.1	0. 52			w.	35.0	Tropopause.
	10,000	251.4	-54.0		- -		w.	27.6	
	11,000	215.4	-53.9				w.	36.3	
	12,000	185. 3	-53.7	:-:-			w.	29.5	
4:20	12,066	180. 3	53. 7	-0.01	 -		w.	28.0	
	13,000	159. 5	-56.0				wsw.	28.2	
	14,000	137. 2	-58.4		 				
	15,000	117. 8	-60.9	<u></u> -	 				
4:37	15, 780	100.1	-62.8	0.25					
			l	f	J	l	l		

DECEMBER 23, 1929

P. m.	M.	Mb.	°C.		P. ct.			M.p.s.	
:12	233	994.4	5.0		48	4. 19	SW.	4.9	Cloudless.
	500	962. 1	2.9				SS₩.	8.0	l
	1,000	904.1	-1.0				sw.	7.9	Į.
l:16	1,079	895. 2	-1.6	0.78			SW.	7.8	1
:18	1,423	857. 3	-2.3	0, 20			WSW.	11.7	!
	1,500	849. 0	-2.6				w.	11.8	
1:20	1,872	809.9	-4. 3	0.45	<i></i>		w.	8.4	
	2,000	796.9	-4. 3				₩.	7.9	İ
1:21	2,146	782, 3	-4, 2	-0.04			w.	7.9	i
	2,500	747.7	-6.0		-		wnw.	11.2	
	3,000	701. 2	-8.6				DW.	12.9	
1:27	3,313	673. 5	-10.2	0. 51		(- 	nw.	14.5	ŀ
	4,000	615.7	-14.4				nw.	16.5	1
L:31	4,234	597. 0	-15.8	0.61			nw.	16.0	
	5,000	539. 5	-18.5				nnw.	23.7	
1:36	5, 269	520.2	-19.4	0.35			nnw.	23.0	ŀ
	6,000	470.9	-24.7				nnw.	30.7	ŀ
:41	6,634	431.6	-29.3	0.73			nnw.	34.8	1
	7,000	410.0	-32.1				n.	35.7	1
	8,000	355. 5	-39.9				n.	37.1	i
1:49	8,729	319.7	-45.5	0.77			nnw.	36.2	Ī
	9,000	306.8	-48.3				nnw.	42.2	l
1:56	9,820	271, 1	-56.8	1.04			nnw.	43.8	Tropopause.
	10,000	263.8	-56.8				nnw.	42.6	1
1:57	10,419	247.0	-56.8	0.00			nnw.	35. 9	
	11,000	225. 9	59, 8				nnw.	28.7	
5:00	11, 176	219.8	-60.7	0. 52			nw.	28.5	
5:04	11,822	198.6	-54.0	 -1.04			wnw.	24.4	!
	12,000	193, 4	-54.0				wnw.	19.2	
	13,000	166. 4	-54.3				w.	33.3	
	14,000	142, 4	-54.5				w.	24.8	
	15,000	122.0	-54.8				w.	27.8	
	15, 558	111.6	-54.9	0.02			w.	24.4	
	16,000	104, 5	55.4	ļ			w.	24.3	
	17,000	89. 7	-56.5				w.	27. 3	
	18,000	76.8	57. 7				wnw.	18.4	
	19,000	65. 7	-58.8				wnw.	19.5	
	20,000	55. 9	-59.9		-		w.	22.0	
	21,000	47. 6	-61.1				w.	22, 3	
	21, 289	45. 5	-61.4	0.11			w.	17.8	l

¹ Less than 0.01 mb.

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

TABLE 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

DECEMBER 27, 1929

DECEMBER 24, 1929

	(M. 8. L.)				Hun	aidity	w	bai	
Time 90th mer.	Altitude (M.	Pressure	Temperature	<u>∆</u> t 100 m.	Relative	Vapor pres- sure	Direction	Velocity	Remarks
P. m. 1:04	M. 233 500	Mb. 991. 3 960. 0	°C. 11.8 10.2		P. ct. 45 46	Mb. 6. 23 5. 72	w. w.	M.p.s. 3. 6 6. 2	Cloudless.
4:06	923 1,000	912. 2 903. 7	7. 6 7. 9	0.61	48 48	5. 01 5. 11	wnw.	8. 4 9. 3	
4:07	1,063	896. 9 850. 1	8. 1 4. 5	-0.36	48	5. 18 4. 13	nw.	10.0 14.1	
	1,500 2,000	799.1	0.3		49	8.06	nw. nw.	15.7	
4:13	2, 454 2, 500	754. 8 750. 6	-3.5 -3.8	0.83	50 50	2. 29 2. 23	nw.	14.2 14.3	
	3,000 4,000	704. 4 618. 8	-7.2 -13.9		49 46	1. 64 0. 85	nw.	17. 3 22. 6	
4:18	4,085	611.9	-14.5	0. 67	46	0.80	nw.	24.4	
4:19	4, 399 5, 000	586. 9 541. 8	-15.2 -18.8	0. 22	45 45	0. 74 0. 53	nw. nw.	27. 4 28. 7	
4:22	5,000 5,327	518.8	-20.8	0.60	45	0.44	nnw.	29.7	
4:26	6, 000 6, 457	473. 4 444. 8	-24.7 -27.4	0. 58	42 40	0. 28 0. 20	nnw.	44.4 45.1	
4:27	6, 570	438.0	-27.8	0. 35	39	0.19	nnw.	45.3	
4:31	7,000 7,694	412.5 374.0	-31.4 -37.3	0.85	37 35	0.12 0.06	n. n.	50. 7 50. 8	
	8,000						nnw.	52.0	
	9,000						nnw.	44.8	
	10,000 10,609						nnw. wnw.	28. 4 25. 0	
	11, 000						wnw.	34.9	
	12,000						wnw.	24.9	
	13,000						wnw.	20.0	
	13, 070						wnw.	20.0	

DECEMBER 25, 1929

			,						·
P. m.	м.	Mb.	°C.		P. ct.	Mb.		M.p.s.	
3:49	233	989. 0	16.6		28	5. 29	SW.	8.7	Cloudless.
	500	958. 2	15.0		31	5. 29	SSW.	12.3	
i	1,000	903. 0	11.9		37	5. 15	wsw.	16.5	
3:53	1,211	880. 4	10.6	0.61	39	4.98	wsw.	17. 5	
3:54	1,402	860.7	12.6	-1.05	36	5. 25	₩.	18.0	
3:541/2	1,500	850. 6	11.5	1, 12	35	4.75	w.	17. ŏ	
J.JE78	2,000	800. 9	8.9		36	4. 10	w.	13.3	
- 1	2,500	753. 7	6.3		37	3. 53	w.	13.1	
3:58	2,619	743. 0	5.7	0.52	37	3.39	w.	13.5	
3.33	3,000	709. 1	2,8	0.02	36	2. 69	wnw.	15. 2	
4.00		661.7	-1.4	0.76	35	1.90		14.4	
4:02	3, 559				35		nw.		
	4,000	625. 7	-4.6		35	1.46	wnw.	16. 9 17. 7	
4:06	4,528	585. 0	-8.4	0.72	36	1.05	nw.	17.9	
	5,000	550.7	-11.2			0.85	nw.		
4:08	5, 158	539.4	-12.1	0.59	36	0.78	WIW.	18.7	
	6,000	482.6	-18.0		24	0.30	nw.	19.5	
4:13	6, 186		-19.3	0.70	21	0.24	nw.	19.4	
	7,000	421.9	-25.0		21	0.13	nw.	19.9	
4:16	7, 165		-26.2	0.70	21	0.12	nw.	20.7	
	8,000	367. 2	-33.7		21	0. 05	nw.	24.1	
4:21	8, 427	345. 5	-37.6	0.90	21	0.04	nw.	23.6	1
4:23	8,893	323.6	-40.8	0.69	21	0.02	wnw.	23.7	
	9,000		-41.5		21	0.02	nw.	23.8	
4:24	9, 235		-43.1	0. 67	20	0.02	nw.	26.3	
	10,000		-48.5		20	0, 01	nw.	25.1	
	11,000		-55.6		20	(1)	nw.	21.6	
4:31	11, 564		59. 6	0.71	20	(1)	nw.	24.7	
	12,000		-62.4		20	(1)	Д₩.	21.6	Tropopause.
4:34	12, 212		-63.8	0.65	20	(1)	DW.	23.1	
	13,000		-59.7			(1)	nw.	21. 3	
4:38	13, 204		-58.7	-0.51	20	(1)	WDW.	20.0	
4:39	13, 444		58. 4	-0.12	20	(1)	wnw.	23.1	
4:40	13, 706		-58.7	0.11	20	(1)	nw.	26.4	
1 : 1	14,000		-59.3			(1)	nw.	26.7	
4:42	14, 409	139. 2	-60.1	0.20	20	(1)	nw.	23. 9	
4:44	14, 642	133. 9		0.17	19	(1)	nw.	24, 8	
	15,000	126.9	-59.9		19	(1)	nw.	18. 5	
4:45	15,036	126.2		-0.18	19	(1)	nw.	18. 2	
	16,000		-61.4	~	19	(1)	wnw.		
	17,000		-63.2		19	(1)	w.	11.0	
4:53	17, 087	91.0	-63.3	0.17	19	(1)	w.	12.4	
	18,000		-62.7		18	(1)	wnw.	8.5	i
5:01	18, 866	68.7	-62.1	-0.07	18	(1)	wnw.	12, 0	
	19,000	67. 2	-61.9		18	(1)	wnw.	12.1	l
i	20,000		-60.2		18	(1)	wnw.	10.9	1
5:10		49. 2	58. 6	-0.16	18	(1)	w.	6.4	
	21,000	49.1	-58.6		18	(1)	w.	6.4	
	22,000	42.1	-56.7		18	(1)			
5:17	22, 921	36. 4	54. 9	-0.19	18	(1)			

¹ Less than 0.01 mb.

	3. L.)				Нил	nidity	w	ind	
Time 90th mer.	Altitude (M. S.	Pressure	Temperature	<u>∆</u> t 100 m,	Relative	Vapor pres- sure	Direction	Velocity	Remarks
P. m. 4:21	M. 233 500	Mb. 992. 3 960. 6	°C. 9.4 7.3		P. ct. 49 47	Mb. 5. 78 4. 80	n.	M.p.s. 3. 8 6. 0	Cloudless.
4:24 4:25	896 1,000 1,195	915. 3 903. 7 882. 3	4.3 4.2 4.1	0. 77	45 44 41	3. 74 3. 63 3. 36	nnw. n. n.	8, 9 10, 0 10, 4	
1.40	1, 500 2, 000 2, 500	849. 6 798. 6 750. 2	2.7 0.5 -1.7		41 40 39	3. 04 2. 53 2. 07	nnw. nw. nw.	9. 8 11. 0 10. 2	
4:31	2, 623	738. 6	$\begin{bmatrix} -2.3 \\ -3.2 \end{bmatrix}$	0.04	39	1.97	nw.	9.9	
4:33	2, 928 3, 000 4, 000	710. 9 704. 1 614. 4	-3. 2 -3. 7 -10. 5	0.30	39 39 41	1. 83 1. 76 1. 03	Wnw. Wnw. Wnw.	10. 5 10. 9 14. 7	
4:38	4, 154 5, 000	601. 2 541. 7	-11.5 -18.1	0.68	41 38 37	0.94 0.48	wnw.	15. 4 11. 3	
4:43 4:45	5, 267 5, 790 6, 000	524. 4 489. 0 475. 1	-20. 2 -21. 7 -23. 2	0. 78 0. 29	39	0.38 0.35 0.29	wnw. wnw. wnw.	10. 5 14. 8 16. 0	
4:52	7, 000 7, 451 8, 000	414, 0 388, 4 359, 4	-30. 5 -33. 8 -38. 2	0. 73	38 36 35 36	0. 13 0. 09 0. 06	nw. nw. wnw.	20, 2 22, 8 25, 2	
5:00	9, 000 9, 660	310. 4 281. 4	-46. 2 -51. 5	0. 80	38 39	0. 02 0. 01	w. w.	26. 9 27. 9	Tropopause.
	10,000 11,000 12,000	267. 8 230. 6 197. 9	-51.7 -52.2 -52.8		39 39 39	0. 01 0. 01 0. 01	w. w.	33. 1 36. 9 33. 3	
5:09	12, 805 13, 000	174. 6 169. 7	-53. 2 -53. 6	0.05	39	0. 01	w. wsw.	35, 8 36, 0	
5:17	14, 000 15, 000 15, 938	145. 6 124. 4 107. 4	-55. 7 -57. 8 -59. 8	0, 21			w. w.	33. 7 28. 8 27. 6	
0.11	16,000			0.21			w.	27.0	

DECEMBER	28.	1929

P. m.	М.	Mb.	°C.	-	P. ct.	Mb.		M.p.s.	
:22	233	995, 6	9.8	1	32	3.88	n.	6.7	Cloudless.
	500	964. 0	7.9		32	3.41	n.	10.4	
:26	935	914. 1	4.8	0.71	32	2.75	nnw.	10.2	
	1,000	907. 0	4.3		32	2.66	nnw.	10.4	
	1,500	852. 4	0.4		30	2.58	nw.	15.0	
1:29	1,596	842. 3	-0.4	0.79	30	1.77	nw.	16.2	
:30	1,759	825. 3	-1.3	0.55	25	1. 37		17. 2	
*:30				0.00	26	1, 26	nw.		
	2,000	800. 7	-2.8				nw.	19.3	
	2,500	751. 6	-5.9	<u>a-aa-</u>	30	1.12	nw.	26.2	
1:35	2,906	713. 4	-8.4	0.62	32	0.96	nw.	28.5	
	3,000	704.8	-8.4		32	0.96	n₩.	30.0	
4:38	3,386	670. 7	-8.4	0.00	34	1.02	DW.	33. 5	·
į.	4,000	620. 5	14, 0		37	0.68	nw.	39.1	
4:42	4,096		-14.9	0.92	37	0.63	nw.	37.8	
4:44	4, 376	591. 5	13. 6	-0.46	34	0.65	wnw.	34,4	
ŀ	5,000	544 . 5	-18.6		34	0.40	nw.	33.4	
4:50	5,831	486. 6	-25.3	0.80	35	0. 22	wnw.	38.8	
	6,000	475, 5	-26.6		35	0.19	wnw.	34.0	
1	7,000	413.5	-34.5	i	35	0.08	wnw.	35.0	
4:55	7, 222	400.7	-36. 2	0.78	35	0.07	wnw.	39.2	
4:56	7, 430	388.8	-37.3	0.53	33	0.06	wnw.	41.2	
	8,000	358. 2	-41.0		32	0.04	WDW.	40.8	
5:01	8, 480	334. 1	-44. 2	0.66	32	0.02	₩.	46.3	
5:02	8,600	328. 0	-43.3	-0.75	32	0.03	₩.	48.0	
0.04	9,000	309. 5	-46.5		31	0.02	₩.	47.8	
5:07		274. 2	-53.0	0.80	28	0.01	w.	53. 9	Tropopause.
0.01	10,000	266. 4	-52. 2	0.60	30	0.01	w.	47.4	Tropopause.
5:08	10,000	259. 2	-51.4	-0.43	32	0.01		49. 0	
0:08		228. 8	- 51. 4	-0.43	31	0.01	₩.	51.0	
F.10	11,000		-54.4	0.20			w.		
5:13		214. 4	-55.9	0.36	30	0. 01	₩.	37. 5	
	12,000	196. 5	-55.7		27	0.01	w.	41. 2	
	13,000	168. 2	-55. 5		22	(1)			
5:20		159. 9	-55.4	-0.26	21	(i)			
5:23		149. 2	-58.0	0.58	21	(i) (i)			
	14,000	143.9	-58.0		21	(1)			
	15,000	123.0	57. 7		21	(1)			
5:30	15, 141	120.3	-57.7	-0. 22	21	(1)	l		
	16,000	105. 2	-60.6		21	(1)			1
5:35			-62.3	0.33	21	(i)			1
	17,000	96. 9 89. 8	-62.0		l		l	l	
1	18,000	76. 7	-61.0		1	L	l		
5:51		70. 7	-60.6	-0.85	1				ł

¹ Less than 0.01 mb.

Table 2.—Tabulated data of sounding-balloon ascents made at Broken Arrow, Okla., during December, 1929—Continued

DECEMBER 29, 1929

	<u> </u>				Hun	idity	Wi	nd	
Time 90th mer. epnning	Akitude (M. S. L.	Pressure	Temperature	<u>A</u> t 100 m.	Relative	Vapor pres- sure	Direction	Velocity	Remarks
P. m. 44	M. 233 500 928	<i>Mb</i> , 991. 9 961. 1 913. 3	° C, 16. 6 14. 6 11. 5	0. 73	P. ct. 32 32 32 32	Mb. 6. 05 5. 32 4. 34	SW. WSW. WSW.	M.p.s. 5. 8 8. 6 10. 6	Cloudless.
19	1,000 1,490 1,500 2,000	905. 4 853. 5 852. 5 802. 3	11. 0 7. 8 7. 8 6. 9	0. 66	32 32 32 30 30	4. 20 3. 39 3. 39 2. 98 2. 94	wsw. w. wnw. wnw.	11. 3 19. 0 19. 0 17. 5 16. 9	
59	2, 122 2, 500 3, 000 3, 711	790. 4 754. 7 709. 7 649. 9	6.7 4.9 2.4 1.0	0.17	31 32 34	2. 68 2. 32 1. 91	wnw. nw. nw.	16. 2 14. 1 17. 0	
04	4,000 5,000 5,025	626. 7 551. 9 550. 2	-2. 5 -7. 7 -7. 8	0. 52	34 35 35 32	1. 69 1, 12 1, 11 0, 48	nw. wnw. wnw. nw.	19. 3 20. 8 20. 8 18. 8	
11 15	6,000 6,626 7,000 7,728	484. 3 446. 0 423. 8 2383. 1	-16. 2 -21. 6 -25. 0 -31. 8	0. 86	30 30 30	0. 27 0. 19 0. 10	nnw. nnw. nnw.	23. 2 25. 0 22. 5	
22	8,000 9,000 9,686	369. 0 320. 1 289. 7	-33. 7 -40. 9 -45. 8	0. 66	30 29 28	0. 08 0. 03 10. 02	nw. n. n.	21. 2 26. 6 30. 0	Tropopause.
24	10,000 10,339 11,000 12,000	276. 8 262. 8 238. 5 205. 5	-45.9 -46.0 -48.0 -50.9	0. 03	27	0. 02 0. 02 0. 01 0. 01	nnw. nw. nw.	23. 1 19. 8 29. 6 34. 6	
31	12,828 13,000 14,000	205. 5 181. 0 176. 5 151. 4	-53. 4 -54. 0 -57. 5	0. 30	26 25 25 25 25	0. 01 0. 01 (1)	nnw. nnw. nw.	20. 1 23. 6 20. 2	
42	16,000	129, 5 115, 4 110, 7 94, 4	-61.1 -63.7 -63.8 -64.0	0, 35	25 25 25 25	EBBE	nw. nnw.	20. 0 17. 6 13. 3 11. 8	
50 54	18,000	86. 4 80. 5 73. 6	-64. 1 -63. 4 -62. 6	0. 02 -0. 15	25 25 25 25 25	(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	nnw. nnw. nnw. nw.	14. 6 14. 4 20. 2	

¹ Less than 0.01 mb.

LITERATURE CITED

- (1) Annals Harvard College Observatory, Vol. 68, Pt. 1
- (2) Monthly Weather Review, June 1929, pp. 231-246.
- (3) Monthly Weather Review, July 1927, pp. 293-307.

WIND VELOCITIES AT DIFFERENT HEIGHTS ABOVE GROUND

By C. F. MARVIN

A correspondent inquires whether the Weather Bureau has made any investigations to determine the relative wind velocity as indicated by an anemometer at different heights above ground. The following reply was made:

Replying to your telegram of August 21, requesting information as to velocities indicated by anemometers at different heights above the ground, you are advised that the Weather Bureau has conducted a number of inconclusive comparisons of wind velocities measured at its stations at different elevations, with the hope that some rational rule would result for coordinating the indications at various heights. Thus far, however, we have not felt justified in announcing any such coordination or formula, so to speak, for reduction to uniform elevations.

The demands upon the bureau for service to the public in great metropolitan and other city areas compel us to occupy quarters such as can be procured in these cities. It is recognized that the wind-velocity records obtained under these conditions are not entirely satisfactory. If one contemplates the skyline of the modern great city, it is obvious that the flow of air over the house tops and among the skyscrapers is turbulent and difficult to measure with any specially significant result. On the other hand, observations made in the open country or in cities of moderate population necessarily represent only those localities, and can not, with assurance, be applied to other localities. Our policy, therefore, has been to submit records as obtained, without attempting to modify or adjust these records, and to supply to any interested person a complete description of the environment and nature of exposure of the anemometer at the particular station, leaving it to the user of the records to make such correlations with environment as may seem to him to be best.

Apart from the foregoing, you are further advised that various comparative observations have been made for winds at different altitudes over an open plain or country, and one formula for increase of velocity is approximately

$$V = V_o \left(\frac{h}{h_o}\right)^{\frac{1}{5}}$$

where h is the height in meters above the surface for which the velocity V in meters per second is to be computed, and h_o the known height (not less than 16 meters) at which the velocity V_o is measured. There are still other relations that cover the general increase in velocity upward for much greater elevations. I infer, however, that you are interested only in elevations of several hundred feet above the actual surface.

THE WEATHER AND RADIO

By W. J. Humphreys

It appears to be human nature to explain whatsoever is not understood by attributing it to something that is still more mysterious, or even to the supernatural. At any rate this is a very common human practice, as excellently illustrated by the many appeals that have come to the Weather Bureau to have radio broadcasting suppressed, on the ground that it is burning up the water vapor of the air and thereby, or in some other manner, greatly decreasing the amount of rainfall, and thus causing disastrous droughts.

On the other hand, some who were bothered with more rain than needed were equally insistent that radio is the cause of excessive precipitation and floods, and urged that therefore all wireless communication be forthwith and preemptorily forbidden.

Let us analyze somewhat nature's way of making rain, and from that see, if we can, just how and to what extent

radio does affect precipitation.

1. The first action necessary to precipitation is evaporation, by which water in the gaseous form is gotten into and made a portion of the atmosphere. Now the chief factors that affect the rate of evaporation are: (a) Temperature of the evaporating water; (b) area of the evaporating surface; (c) wind velocity; (d) dryness of the air.

Of course no one in the neighborhood of a powerful "sending station" ever claims that any lake, reservoir or other body of water near-by, spreads over a lot more ground when the station is in operation than it does when the station is silent. He knows, too, that the temperature of the water does not appreciably vary, if at all, with the wireless activity. Neither, so far as any one can observe, does the wind round about a wireless station change with the amount of its broadcasting or receiving. We shall see presently, too, that radio does not alter the dryness of the air.

Obviously, since radio does not affect any of the things that themselves make for evaporation, neither does it affect evaporation itself.

2. The next step by nature in producing rain is to condense the water vapor out of the air in the form of drops. To this end two things are necessary: (a) One of these is the presence of condensation nuclei, that is, excessively small particles of sea salt, certain kinds of land dust, or other substances that readily take up water vapor. These nuclei about which cloud droplets form always are in the atmosphere in superabundance. Besides, they are not produced by wireless waves, as we know by direct experiment. (b) The other essential to